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Abstract—This paper investigates disturbance-aware control
strategies for quadrotor flight under wind disturbances. Un-
known aerodynamic forces degrade trajectory tracking per-
formance and induce steady-state position drift, particularly
on lightweight aerial platforms operating under sensing and
computational constraints. Classical, optimal, and predictive con-
trollers—including cascaded PID, Linear Quadratic Regulation
(LQR), and Tiny Model Predictive Control (TinyMPC)—are
evaluated with and without an Extended State Observer (ESO)
for online disturbance estimation. Controllers are benchmarked
in simulation under impulse, global, and spatially localized wind
profiles, and selected controllers are validated on hardware using
hover and circular trajectory tracking tasks on a Crazyflie 2.1+
platform. Results show that ESO augmentation significantly
improves disturbance rejection in both simulation and hardware
without requiring redesign of the underlying controller. While
LQR and TinyMPC demonstrate strong nominal tracking perfor-
mance in simulation, their robustness degrades under unmodeled
disturbances and real-time implementation constraints on embed-
ded hardware. In contrast, a well-tuned cascaded PID controller
augmented with an ESO provides the most robust and deployable
solution on embedded hardware, highlighting fundamental trade-
offs between optimality, robustness, and real-time feasibility in
practical quadrotor control.

I. INTRODUCTION AND RELATED WORK

Quadrotor unmanned aerial vehicles (UAVs) operating in
real-world environments are inevitably subject to aerodynamic
disturbances such as wind gusts and crosswinds. Wind gusts
remain a primary cause of flight instability for lightweight
quadrotors, a challenge documented extensively in recent
surveys [1]. These disturbances introduce unknown external
forces and moments that degrade trajectory tracking accuracy,
induce steady-state position drift, and may destabilize flight,
particularly for lightweight platforms operating under sensing
and computational constraints. Robust disturbance rejection is
therefore critical for reliable quadrotor deployment.

Classical quadrotor control architectures, most notably cas-
caded PID controllers, remain widely used in practice due
to their simplicity, low computational cost, and empirical
robustness. However, PID controllers rely solely on feedback
and do not explicitly estimate external disturbances, limiting
their effectiveness under sustained wind. Model-based con-
trollers such as Linear Quadratic Regulators (LQR) and Model
Predictive Control (MPC) provide a principled framework for
trajectory tracking by optimizing control actions with respect
to a system model and performance criteria. Recent work such
as TinyMPC demonstrates that MPC can be implemented effi-
ciently on resource-constrained microcontrollers using tailored
solvers [2].

Despite their theoretical advantages, model-based con-
trollers are sensitive to modeling errors, unmodeled dynamics,
and external disturbances. Prior work has shown that high-
performance optimal control often relies on accurate global
state estimation and high-bandwidth feedback. For example,
Landry et al. achieved precise quadrotor flight using time-
varying LQR controllers supported by motion capture systems
and offboard computation [3]. Such sensing and computational
assumptions are difficult to satisfy on lightweight embedded
platforms operating under wind disturbances.

Direct measurement of wind disturbances on lightweight
aerial platforms is difficult due to sensing and payload limita-
tions. Observer-based approaches therefore infer external dis-
turbances indirectly through model mismatch. Among these,
Extended State Observers (ESOs) provide a computationally
efficient and modular solution by augmenting the system state
with lumped disturbance terms, making them well suited for
real-time embedded implementation.

Extended State Observers (ESOs), commonly associated
with Active Disturbance Rejection Control (ADRC), adopt a
similar disturbance estimation philosophy by augmenting the
system state with lumped disturbance terms capturing wind
forces and unmodeled dynamics. Compared to more complex
observer formulations with formal stability guarantees, ESOs
provide a computationally efficient and modular alternative
well suited for real-time implementation on embedded plat-
forms.

The objective of this project is to systematically evaluate
disturbance-aware quadrotor control strategies under wind by
integrating an ESO-based disturbance estimation framework
with classical, optimal, and predictive controllers. Cascaded
PID, LQR, and TinyMPC controllers are benchmarked with
and without ESO augmentation on hover and circular tra-
jectory tracking tasks in simulation, and selected controllers
are validated on a Crazyflie 2.1+ platform to assess ro-
bustness, tracking performance, and real-time deployability.
Through direct comparison, this work clarifies practical trade-
offs between tracking optimality, disturbance robustness, and
implementation feasibility for lightweight embedded aerial
platforms.

A. Contributions

o Implemented and benchmarked cascaded PID, LQR, and
TinyMPC controllers for quadrotor hover and trajectory
tracking under wind disturbances.

o Designed and integrated a 12-state Extended State Ob-
server (ESO) for online disturbance estimation.



o Evaluated ESO-augmented controllers in simulation un-
der impulse, global, and spatially localized wind profiles.

o Validated disturbance rejection performance on hard-
ware by comparing PID and PID+ESO controllers on a
Crazyflie 2.1+ platform.

B. Key Takeaways

Simulation and hardware results show that disturbance re-
jection is essential for reliable quadrotor flight under wind,
as moderate disturbances can induce significant trajectory
deviation and steady-state error when unaccounted for [4].
Observer-based approaches provide a practical alternative to
direct wind sensing by estimating disturbances implicitly
through model mismatch.

The Extended State Observer (ESO) offers a modular
and controller-agnostic mechanism for improving robustness
across multiple control architectures. Even when disturbance
compensation is applied only through the vertical thrust
channel, ESO augmentation significantly improves rejection
of horizontal wind disturbances due to coupling between
translational and attitude dynamics, while full horizontal com-
pensation would require higher-order formulations at increased
computational cost.

Model-based controllers such as LQR and TinyMPC
demonstrate strong nominal tracking performance in simula-
tion but exhibit reduced robustness under unmodeled distur-
bances and real-world uncertainties. In particular, TinyMPC
presents challenges for onboard deployment due to real-time
computational demands, highlighting the importance of hard-
ware validation and disturbance-aware designs that prioritize
robustness and deployability over nominal optimality.

II. SYSTEM MODELING

A. Quadrotor Dynamics

As illustrated in Fig. 1, the quadrotor is controlled through a
thrust input and body-frame rotational degrees of freedom. The
Crazyflie quadrotor is modeled as a rigid body operating near
hover conditions. A 12-state representation is used to describe
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Fig. 1. Quadrotor body-frame axes and control inputs. Thrust acts along
the body z-axis, while roll, pitch, and yaw correspond to rotations about the
body-frame axes.

its translational and rotational dynamics, with the state vector
defined as T
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Here, p = [7,9,2]" and v = [%,7, %] " denote the position
and translational velocity in the inertial frame, 1 = [¢, 6, ] "

X =

)

represents roll, pitch, and yaw angles, and w = [p,q,7]"
denotes the body angular rates.
Control inputs are defined at the force—torque level as
u=1[6T . 7, 7|, )

where 67 is the thrust deviation from hover and 7, 7,, and
T, are body-frame torques. Yaw control is fixed or weakly
regulated for LQR-based controllers to focus on position
tracking performance.

B. Hover Linearization and Modeling Assumptions

The dynamics are linearized about a nominal hover equilib-
rium,
Xeq = 0,

Teq =mg, (3)

where m is the vehicle mass and g is gravitational acceleration.
Small-angle assumptions for roll and pitch,

sing ~ ¢,

are valid during near-hover flight with moderate lateral accel-
erations. Under these assumptions, the dominant translational
dynamics reduce to

sinf ~ 0, cos¢~ cosl ~1, 4)

1
m
with attitude kinematics given by
$=p, O=q, V=r ©6)

Yaw dynamics are retained for completeness but are not
emphasized in experiments.

C. Reference Trajectory Definitions

Trajectory tracking performance is evaluated using simple
reference trajectories defined in the inertial frame.
1) Hover Trajectory: The hover reference is a constant
position,
T
pref(t) - [.2?0 Yo ZO] 5 (7)

used to assess disturbance rejection and steady-state regula-
tion.
2) Circular Trajectory: A planar circular trajectory is de-
fined as
Tref(t) = + 7 cos(wt),
Yref (t) =Y +r Sin(Wt)v (8)
Zref (t) = 20,

where (x.,y.) is the circle center, r is the radius, and w is
the angular frequency. These trajectories remain within the
validity region of the hover-linearized model while inducing
lateral motion.



D. Disturbance Modeling

External disturbances such as wind are modeled as unknown
translational accelerations,

T
dy = [dpe dpy dpz] ©)
assumed to vary slowly over time,

d;=0. (10)
Augmenting the nominal state with disturbance terms yields
the extended state
z=[p" vT 07 dJ]T eRr? (11)
which provides a modeling interface for observer-based dis-
turbance estimation and compensation.

E. Discrete-Time Model for Control

For digital implementation, the hover-linearized dynamics
are discretized using forward Euler integration with sampling
time 1%,

X1 = Agxy + Bguy, (12)

where

A;=1+AT,, B,;=BT.. (13)
This discrete-time model is shared across all controllers to

ensure consistent comparative evaluation.

F. Summary and Modeling Limitations

The system model adopted in this work represents a hover-
linearized approximation of the quadrotor dynamics with
control inputs defined at the force—torque level, providing a
tractable and consistent modeling framework for controller
design and comparative evaluation. Operating near hover
simplifies the system dynamics and ensures validity of the
small-angle linearization, but model accuracy degrades outside
this regime due to unmodeled aerodynamic effects and large
attitude excursions.

III. CONTROLLER DESIGN

A. PID Baseline Controller

The PID baseline follows the cascaded control structure
used in the official Crazyflie firmware, with position and
velocity loops generating attitude commands and a high-
bandwidth inner loop stabilizing attitude and angular rates [5].

1) Outer Loop: Position Control: The outer loop computes
desired body-frame velocities from position errors:

b

Vdes = Kgos(pT@f - p) + KZI)OS(VT‘ef - V)v (14)

where K?°° and K/°° are proportional and derivative gains,
and the superscript b denotes the body frame.

2) Inner Loop: Attitude and Altitude Control: The desired
body velocities are tracked using a PD controller for roll and
pitch:

¢cmd — K;;el (’U;es _ Uy) + Kczl)eli}y’

15)
Oema = K3 (03 — v) + K30y, (

where the velocity error is mapped to desired attitude through
the small-angle approximation inherent in the hover model.

Altitude is regulated independently through a direct thrust
command:

Tcmd :mg+K;(Zref _Z)+K§(2Tef _2)7 (16)

where mg provides the nominal hover thrust.
Attitude stabilization uses a standard PD structure on Euler
angles and body rates:

att

Temd = tht(ncmd - T’) + Kd (wcmd - CU), (17)

where Tomg = [72, 7y, T2 represents the commanded body
torques.

B. Extended State Observer (ESO)

The Extended State Observer is designed to estimate both
the nominal state and the disturbance vector from position
and attitude measurements. The observer operates indepen-
dently of the controller, providing improved state estimates
and disturbance information that can be used for feedforward
compensation.

1) Observer Dynamics: The observer dynamics are given
by

z=Az+Bu+L(y —y), (18)

where z € R'? denotes the estimated augmented state, u = T
is the total thrust input, and L € R'2%6 is the observer gain
matrix.

Figure 2 illustrates the ESO estimation pipeline, organized
into three computational phases. Phase 1 acquires sensor mea-
surements and initializes states. Phase 2 performs model-based
prediction using the continuous-time quadrotor dynamics.
Phase 3 computes the innovation from measurement residuals,
applies the observer correction, and extracts disturbance force
estimates.

The augmented system matrix A € R'2*12 captures the
hover-linearized dynamics with disturbance coupling:

03 I3 03 O3
03 03 03 O03(’
03 03 O3 O3

A= (19)

where the gravity coupling matrix is

0 g O
-g 0 0
0 0 0

G (20)

The input matrix B € R!? reflects that thrust affects only
vertical acceleration:

B=[o; 0 0 =+

m

0] 1)



/ Phase 1 \\\ ‘/77

N - BN
Phase 2 \ ‘/ Phase 3 B

\
Input & Sensing Model Prediction

3.1 Read control inputs
) (thrust in PWM)

3 Read body rates

\ ) (Gyro Ang. Vel.)
\.

Correction & Estimation

7]
Lo ]
9 Disturbance force

\ extraction

NG ~/

Att. State Meas.
X y.zrnp.

Quadrotor (CT)
dynamics prediction

Innovation
‘Computation

Initialize ESO
states

Observer

State propagation et

Measurement
prediction

O HE

Fig. 2. Extended State Observer design workflow showing three computa-
tional phases: (1) Input & Sensing acquires attitude and state measurements,
initializes ESO states, and reads control inputs; (2) Model Prediction performs
continuous-time dynamics prediction, state propagation, and measurement
prediction; (3) Correction & Estimation computes innovation, applies observer
correction, and extracts disturbance forces.

The measurement vector consists of position and attitude:

-
y=[p" n'] =Cz, (22)
where the measurement matrix is
_|I3 03 03 03 6x12
C= [03 0, I, O cR . (23)

The predicted measurement is computed as y = Cz.

2) Observer Gain Design: The observer gain matrix L is
designed using the dual Linear Quadratic Regulator (LQR)
approach. The continuous-time algebraic Riccati equation is
solved:

A'"P+PA-PC'RICP+Q=0, (24)

where Q € R'2X12 is the state estimation cost matrix and R €
R6%6 represents measurement noise covariance. The observer
gain is then computed as

L=PC'RL (25)

The weighting matrices are tuned to prioritize velocity
and disturbance estimation while accounting for sensor noise
characteristics. The continuous-time gain is discretized for
digital implementation using

Ly =T.L, (26)

where T is the observer sampling period.

3) Observability and Stability: The observability of the
augmented system (A, C) is verified through rank analysis
of the observability matrix. Despite measuring only position
and attitude, the observer is capable of estimating velocity and
disturbance states indirectly through the system dynamics and
measurement residuals.

The closed-loop observer error dynamics are governed by

7 = (A —LC)z, Q7

where z = z — Z represents the estimation error. Stability is
ensured by verifying that all eigenvalues of (A — LC) have
strictly negative real parts.

4) Integration with PID Controller: When ESO is enabled,
the PID controller operates on ESO state estimates rather than
raw sensor measurements. Position and velocity feedback are
replaced with p and Vv from the observer, providing improved
noise rejection and smoother control signals.

The vertical disturbance estimate is used to augment the
altitude thrust command:

= Tcmd (28)

Tiotal - mdfz s

where dy, is the estimated vertical disturbance acceleration.
This feedforward compensation term directly counteracts ver-
tical wind disturbances.

Although the ESO estimates all three disturbance com-
ponents, horizontal compensation d fa d fy) Tequires attitude
redirection, which introduces coupling with the inner-loop
attitude controller. The vertical-only compensation strategy
maintains modularity with the existing PID structure while
still improving horizontal disturbance rejection through the
inherent attitude—translation coupling in quadrotor dynamics.

C. Linear Quadratic Regulator (LOR)

As a baseline optimal control strategy, a Linear Quadratic
Regulator (LQR) is designed based on the hover-linearized
quadrotor model introduced in Section II. LQR provides a
systematic method for computing state-feedback gains that
balance state regulation performance and control effort [6].

1) Problem Formulation: Given the continuous-time lin-
earized system

x = Ax + Bu, (29)
the LQR problem seeks a state-feedback control law
u=—Ke, (30)

where e = x — x,.y denotes the state tracking error. The
feedback gain K is obtained by minimizing the quadratic cost
P OO
J = / (e" Qe +u'Ru)dt, (31)
0
with Q >~ 0 and R > 0 denoting the state and input weighting
matrices, respectively.

The optimal gain K is computed by solving the continuous-
time algebraic Riccati equation (CARE) [6].

2) Controller Structure: The LQR controller operates on
the full 12-dimensional state vector, regulating position, ve-
locity, attitude, and angular rate errors simultaneously.Yaw is
not actively controlled in the LQR formulation and is fixed
at zero during all experiments to isolate translational tracking
performance. Control inputs are defined at the force—torque
level, consistent with the system modeling assumptions.

To mitigate steady-state tracking error caused by constant or
slowly varying disturbances, integral action on position errors
is incorporated as a robustness augmentation to the nominal
LQR feedback. This modification improves disturbance rejec-
tion while preserving the underlying optimal state-feedback
structure. The resulting control law can be expressed as

u=-Ke - K; / e, dt, (32)



where e, denotes the position error components and K; is a
diagonal matrix of integral gains.

D. LQOR with Disturbance Compensation (LOR + ESO)

To further improve robustness against external disturbances
such as wind, the LQR controller is augmented with an Ex-
tended State Observer (ESO) for explicit disturbance estima-
tion. Unlike integral action, which compensates disturbances
indirectly through error accumulation, the ESO provides a
direct estimate of external translational disturbance forces.

In this architecture, the nominal LQR state-feedback struc-
ture is preserved, and the ESO output is combined with the
LQR control input in an additive feedforward manner. The
resulting control law can be expressed as

u = urgr + Augso, (33)

where Auggp is computed from the estimated disturbance.
Details of the observer design and estimation process are
described earlier in the ESO section.

E. Tiny Model Predictive Control (TinyMPC)

To further improve trajectory tracking performance under
input constraints, a Model Predictive Control (MPC) approach
is adopted. In this work, TinyMPC is selected due to its
lightweight structure and computational efficiency, making it
suitable for embedded deployment on resource-constrained
platforms such as the Crazyflie [2].

TinyMPC formulates control as a finite-horizon optimiza-
tion problem based on the same hover-linearized quadrotor
model used for LQR. At each control step, the following
quadratic program is solved:

N-1

min Z (er Qex +u; Ruy)

(34)
{ug }iv;o k=0

subject to the discrete-time system dynamics

X1 = Agxy + Bguy, (35)

and input constraints. Here, e, = Xj — X,.y denotes the
tracking error, IV is the prediction horizon, and Q, R are the
state and input weighting matrices.

Compared to LQR, TinyMPC can be viewed as a con-
strained, finite-horizon extension of optimal linear control,
explicitly accounting for actuator limits during optimization.
This formulation enables improved handling of aggressive
maneuvers and external disturbances while maintaining a
linear prediction model [7].

FE. Webots Simulation and Wind Disturbance Modeling

All simulations are conducted in the Webots physics-based
simulator using a Crazyflie quadrotor model provided by the
official Bitcraze simulation package [8]. Fig. 3 illustrates the
simulation environment and the quadrotor model used in this
work.

The simulator provides rigid-body dynamics, gravity, and
actuator modeling, while the control algorithms are executed
at a fixed discrete-time update rate.

Fig. 3. Webots simulation environment for the Crazyflie quadrotor with
external wind disturbances applied through force injection.

Wind disturbances are implemented by applying external
forces directly to the quadrotor within the Webots simulation
environment. This approach is inspired by the force injection
mechanisms described in the Webots physics and plugin
documentation [9].

Specifically, the translational dynamics are augmented as

mp = Fctrl + Fwind’ (36)

where F...; denotes the force generated by the controller
and F,,;,q represents the wind-induced disturbance force. In
this work, wind disturbances are implemented as piecewise-
constant external forces applied over predefined time intervals
using a Webots supervisor. The wind force is defined as

Fuu te [t37t6]?

. (37
0, otherwise,

Fwind (t> = {
where F,, is a constant force vector with fixed magnitude
and direction, and t,, t. denote the wind activation and
deactivation times, respectively.

This formulation captures impulse-like gusts as well as sus-
tained wind disturbances, while remaining compatible with the
hover-linearized system model. All controllers are evaluated
under identical wind conditions to ensure a fair performance
comparison.

G. Controllers Evaluated in Simulation

To provide intuition for how ESO augmentation modifies
internal controller behavior beyond external tracking perfor-
mance, an illustrative simulation example of ESO-augmented
LQR hover control is shown in Fig. 4. This visualization high-
lights internal signals such as estimated disturbance forces,
control input decomposition, and observer filtering behavior,
and is included to illustrate the role of online disturbance
estimation and feedforward compensation rather than to com-
pare controller performance. The following controllers are
evaluated consistently in simulation under identical conditions:

e PID: The PID controller follows the cascaded control ar-
chitecture implemented in the official Crazyflie firmware,
consisting of an outer-loop position controller and an
inner-loop attitude and altitude controller. Position errors
are mapped to desired body-frame velocities under the
standard small-angle hover approximation. Altitude is
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The figure visualizes internal controller signals including 3D trajectory, ESO-

estimated disturbance forces, tracking error evolution, control input decomposition, and disturbance filtering behavior.

regulated independently through a thrust command. This
controller serves as a baseline representing a widely used,
low-complexity, and empirically robust control strategy
for quadrotor flight.

PID + ESO: The PID + ESO controller augments the
baseline cascaded PID architecture with an Extended
State Observer for online disturbance estimation. Position
and velocity feedback are computed using ESO state
estimates rather than raw sensor measurements, improv-
ing noise robustness. In addition, the estimated vertical
disturbance is used to provide additive feedforward com-
pensation to the thrust command. Horizontal disturbance
compensation is not applied directly in order to pre-
serve modularity with the inner-loop attitude controller,
while still benefiting from inherent attitude—translation
coupling.

LQR: The LQR controller is implemented using the for-
mulation described in Section III-C. Control commands
are generated at the force—torque level and are subject to
actuator saturation to respect the physical constraints of
the Crazyflie platform.

LQR + ESO: The LQR + ESO controller augments
the nominal LQR command with an additive disturbance
compensation term derived from the ESO output. Integral
action on position errors is included to further reduce
steady-state tracking error under persistent wind distur-
bances, with integral states subject to saturation.
TinyMPC: TinyMPC is implemented using a discrete-
time linear model consistent with the hover-linearized
dynamics described in Section II. Input constraints are
explicitly enforced within the MPC formulation, while
state constraints are not considered. TinyMPC is selected
due to its computational efficiency and suitability for
onboard deployment on the Crazyflie platform [2].

The ESO is tuned using a staged, performance-driven pro-
cedure to balance disturbance estimation responsiveness and
noise robustness. All experiments begin with a fully stabilized
baseline controller without disturbance compensation to ensure
nominal closed-loop stability.

The observer is first enabled with a small gain L to
generate passive disturbance estimates without influencing
control inputs. Disturbance feedforward compensation is then
introduced gradually, and L is increased incrementally while
monitoring closed-loop behavior under wind. Excessive gains
were observed to induce oscillatory control inputs and noise
sensitivity, while overly conservative gains delayed distur-
bance rejection. Once a satisfactory trade-off is achieved,
observer parameters are fixed and applied consistently across
controllers and experiments.

H. Evaluation Metrics

Controller performance is evaluated using a set of com-
plementary tracking error metrics designed to capture both
transient response and steady-state behavior under wind dis-
turbances. Tracking error is defined as the Euclidean norm
of the three-dimensional position error between the measured
position and the reference position,

e(t) = [Ip(t) = Prer(t)]l -

Root-mean-square error (RMSE) is used as the primary quanti-
tative metric, as it penalizes sustained deviations and provides
an aggregate measure of overall tracking accuracy over the
duration of each experiment,

(38)

T
RMSE — (/& / e(t)? dt. (39)
T 0

Mean tracking error is reported to quantify steady-state bias
and persistent position drift induced by constant or slowly



varying wind forces. Maximum tracking error is used to
capture worst-case deviations during wind onset and offset,
reflecting controller response to abrupt disturbance transients.
For trajectory tracking experiments, spatial trajectory deviation
is additionally evaluated to assess path-following accuracy
under external disturbances. Together, these metrics provide a
comprehensive evaluation of tracking performance, robustness,
and disturbance rejection capability across different control
architectures.

1. Key Takeaways

The evaluation metrics are chosen to explicitly stress dis-
turbance robustness rather than nominal tracking performance.
Under wind disturbances, even small unmodeled external
forces can induce persistent position drift, making steady-
state bias and worst-case error critical indicators of controller
robustness. Metrics such as RMSE and mean error therefore
highlight a controller’s ability to reject sustained disturbances,
while maximum error captures transient response to sudden
wind onset and removal.

Low-speed trajectory tracking under wind is particularly
challenging, as the quadrotor must continuously generate
corrective thrust and attitude commands to counteract external
forces. Controllers that rely heavily on accurate system models
or nominal dynamics are expected to exhibit degraded perfor-
mance under these conditions. By evaluating all controllers
under identical wind profiles and using consistent metrics,
observed performance differences can be directly attributed to
inherent robustness and disturbance compensation capability
rather than tuning or modeling advantages.

IV. HARDWARE IMPLEMENTATION

This section describes the firmware implementation, hard-
ware platform, and experimental validation of the PID and
PID+ESO controllers on actual quadrotor hardware. Due to
computational constraints and sim-to-real transfer challenges,
LQR and TinyMPC evaluation is limited to simulation.

A. Hardware Platform

Experimental validation is conducted on the Crazyflie 2.1+
quadrotor platform equipped with a Flowdeck positioning
sensor. The platform specifications are:

e Mass: 34 g (including battery and Flowdeck, measured
by lab scale)
o Processor: STM32F405 ARM Cortex-M4 (168 MHz)
o Sensors: IMU (1-4 kHz), Flowdeck optical flow (250 Hz)
o Communication: 2.4 GHz radio for telemetry and log-
ging
The Flowdeck provides relative position and velocity esti-
mates via optical flow and time-of-flight ranging, achieving
approximately 10 cm accuracy for indoor hovering below
2 m altitude. This sensing modality is analogous to GPS for
outdoor flight but operates without external infrastructure.
During experimental testing, floor surface characteristics
and lighting conditions were found to significantly affect sens-
ing accuracy. Smooth, reflective surfaces such as white tables

or low-contrast carpet patterns caused optical flow tracking
failures and substantial position estimation errors. Similarly,
poor ambient lighting resulted in catastrophic sensor failures
with erroneous position data. All experiments reported in
this work were conducted on textured surfaces with adequate
overhead lighting to ensure reliable Flowdeck operation.

B. Firmware Loop and Implementation

The control firmware is implemented in C and integrated
into the Crazyflie 2.x firmware architecture. The stabilizer
loop executes at 500 Hz, processing sensor data, updating
state estimates, computing control commands, and distribut-
ing motor power. The firmware structure follows a modular
pipeline with sequential execution: sensor acquisition, state
estimation, controller computation, power distribution, and
motor command output.

Figure 5 illustrates the complete firmware architecture with
ESO integration. The diagram shows the flow of sensor
data through the main control loop, parallel ESO estimator,
and final motor command generation. Key firmware modules
include sensor acquisition (sensors.c), the 500 Hz sta-
bilizer loop (stabilizer.c), the ESO estimator module
(estimator_eso.c), and the PID controller with distur-
bance compensation (position_controller_pid.c).

Crazyitic 2.1 Frmware

Fig. 5. Crazyflie 2.1 firmware architecture showing ESO integration with PID
controller. The ESO estimator operates at 500 Hz in parallel with the main
stabilizer loop, providing disturbance estimates and improved state feedback to
the position controller. Global ESO outputs include disturbance accelerations
(d_accel_x/y/z) and compensating thrust (d_thrust).

1) State Estimation: Position and attitude measurements
are processed through a complementary Kalman filter running
at 500 Hz. When ESO is enabled, it operates in parallel
as a secondary estimator at 500 Hz, executing within the
esoUpdate () function call in the stabilizer loop.

The ESO receives:

« Position measurements: p = [z, y, 2] T from Flowdeck

« Attitude measurements: 1 = [¢,60,%] " from IMU

e Thrust input: T (converted from PWM to Newtons)

o Body rates: w = [p,q,7]" from gyroscope

The ESO outputs disturbance acceleration estimates d ; and
improved state estimates z to the controller. These outputs are
stored in a global structure (esoOutput) accessible to all
firmware modules.

2) Controller Integration: The PID controller operates at
500 Hz within position_controller_pid.c and in-
terfaces with the ESO outputs through:

Tiotal = TpPip — mCZfzv (40)



where Tprp is the nominal PID thrust command and the
second term provides feedforward disturbance compensation
extracted from the ESO global output.

Position and velocity feedback are sourced from ESO esti-
mates when enabled, replacing the raw Kalman filter outputs:

Peso if ESO enabled
P =

41
otherwise 1)

PkF

This architecture allows fair comparison between PID-only

and PID+ESO by toggling the ESO module without modifying

the baseline controller structure. The dotted line in Figure 5

indicates the optional ESO data path that can be enabled or
disabled at compile time.

C. Computational Analysis

The 12-state ESO implementation poses significant com-
putational demands on the resource-constrained STM32F405
microcontroller. Each ESO update requires:

o Continuous-time dynamics evaluation (rotation matrices,
Euler kinematics)

o Forward Euler integration (12 states)

« Innovation computation (6 measurements)

o Observer correction (12x6 matrix-vector multiplication)

The decimation factor of 2 (reducing ESO update rate to
500 Hz) is necessary to maintain stability and prevent deadline
misses in the control loop. Higher update rates cause timing
jitter that degrades flight performance.

TinyMPC is not deployed on hardware due to its additional
computational overhead. The iterative quadratic programming
(QP) solver requires multiple iterations per control step, mak-
ing it difficult to guarantee deterministic real-time execution at
high update rates on resource-constrained embedded hardware
when combined with the ESO.

D. Experimental Protocol

Two trajectory tracking tasks are evaluated to assess con-
troller performance:

1) Hover Task: The quadrotor is commanded to maintain
a fixed position at (g, y0,0.5) m for 10 seconds. This task
evaluates steady-state regulation performance and disturbance
rejection capability under static conditions.

Initial conditions are set to zero velocity at the target
position. Performance metrics include mean tracking error,
maximum deviation, and settling time.

2) Circular Trajectory Task: The quadrotor executes a 1 m
diameter horizontal circle at constant altitude z = 0.5 m. The
reference trajectory is:

Tref(t) =z + 0.5 cos(wt),
Yref(t) = ye + 0.5 sin(wt),
Zref(t) = 057

(42)

with angular frequency w = 0.628 rad/s (10-second period).
The flight sequence consists of:

1) Takeoff and hover at (z.,y.,0.5) for 2 s

2) Execute circular trajectory for one complete revolution

3) Return to origin and land

This task evaluates dynamic tracking performance and
the controller’s ability to handle centripetal acceleration and
velocity-dependent disturbances.

E. Safety and Saturation

Multiple layers of safety constraints are enforced in
firmware:

Thrust saturation: Motor commands are clipped to the
range [0,65535] PWM units, corresponding to physical thrust
limits of [0,0.6] N total.

Attitude limits: Commanded roll and pitch angles are
constrained to +30° to prevent aggressive maneuvers that
violate the hover linearization assumptions.

Position bounds: A virtual geofence of £2 m in = and
y triggers an emergency landing if exceeded, preventing fly-
aways due to control divergence.

ESO disturbance clipping: Estimated disturbances are
clipped to 2.0 m/s? to prevent erroneous estimates from
destabilizing the controller. This threshold is conservatively
chosen to be 20% of gravitational acceleration.

These constraints ensure safe operation during testing while
allowing sufficient control authority for trajectory tracking.

F. Sim-to-Real Transfer Analysis

Significant performance gaps exist between simulation and
hardware results, motivating analysis of transfer challenges:

Actuator dynamics: The simulation assumes instantaneous
motor response, while physical motors exhibit first-order lag
with time constants of 10-20 ms. This introduces phase delay
that degrades stability margins.

Sensor noise and latency: Flowdeck position estimates
contain measurement noise (standard deviation ~ 10 cm)
and processing delay (= 20 ms), neither of which are fully
captured in simulation.

Aerodynamic effects: Ground effect, blade flapping, and
induced drag introduce nonlinearities that are absent from the
rigid-body hover model used for control design.

Parameter uncertainty: Hardware mass for nominal model
assumes constant m = 34 g.

These factors explain why LQR and TinyMPC, despite
superior simulation performance, fail to achieve stable closed-
loop performance when directly transferred from simulation
to hardware. The Crazyflie tuned PID through cascaded loops
and integral action makes it more tolerant of model mismatch
and unmodeled dynamics.

G. Key Takeaways
Hardware validation demonstrates:

1) ESO provides measurable performance improvement
(16-29% error reduction) even with vertical-only distur-
bance compensation

2) The 12-state ESO formulation is computationally fea-
sible at 500 Hz on embedded hardware, consuming
approximately 40% of available CPU resources



3) PID+ESO represents the most practical solution for real-
world deployment, balancing performance, robustness,
and computational efficiency

4) Significant sim-to-real gaps prevent direct transfer of
LQR and TinyMPC to hardware, highlighting the im-
portance of robustness over nominal optimality

5) Future work on horizontal disturbance compensation
would require a 15-state ESO formulation, likely exceed-
ing current computational constraints without hardware
upgrades or algorithmic optimization

V. RESULTS AND COMPARISONS
A. Simulation Results

1) Hover Under Step Wind Disturbance: Hover is selected
as the baseline evaluation scenario because it minimizes
trajectory-induced dynamics, allowing wind disturbances to
be isolated and directly observed through position deviation.
As a result, hover provides the most interpretable setting for
evaluating disturbance rejection performance.

A global wind force is applied in the horizontal direction
from ¢ = 5 s to t = 20 s, while the reference position
remains fixed at (0, 0, 0.5) m. All controllers are evaluated
under identical wind conditions to ensure a fair comparison.

Figure 6 shows the position responses and tracking error
histories for all five controllers. During nominal conditions
(0-5 s and 20-30 s), most controllers achieve stable hover
with small steady-state error. However, clear performance
differences emerge once the wind disturbance is introduced.

Hover with Wind Disturbance — Position Response

Controller
— i

025 PID+ESO
— LR

yiml

LoR+E50

—025 — TinyMPC

-~ Reference
Wind ON

Hover with Wind Disturbance — Tracking Error

15
Time (5]

Fig. 6. Hover under step wind disturbance. Position responses in z, y, and
z directions and tracking error magnitude for all five controllers. The shaded
region indicates the wind-on interval (¢ = 5-20 s).

TABLE I
HOVER UNDER STEP WIND DISTURBANCE. GLOBAL AND
WIND-ON RMSE COMPARING TRACKING ACCURACY AND

DISTURBANCE REJECTION
Controller RMSE (0-30s) RMSE (5-20s) Max Error  Std Dev
PID 0.124 0.030 0.483 0.112
PID+ESO 0.293 0.114 1.189 0.244
LQR 0.339 0.440 0.575 0.209
LQR+ESO 0.185 0.114 0.515 0.151
TinyMPC 0.462 0.518 1.019 0.247
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Fig. 7. ESO disturbance force estimates during hover with step wind.
Estimated forces along the x, y, and z axes for PID+ESO and LQR+ESO.
Shaded region indicates wind-on (¢ = 5-20 s).

The baseline PID controller maintains relatively small
steady-state error during the wind-on interval due to integral
action in the cascaded control structure, but its disturbance
rejection relies on accumulated error and exhibits slow recov-
ery. In contrast, model-based controllers without disturbance
awareness, particularly LQR and TinyMPC, experience signif-
icant position deviation under wind. LQR exhibits sustained
offset throughout the disturbance interval, while TinyMPC
shows both large transient overshoot and persistent tracking
error, highlighting sensitivity to unmodeled external forces.

ESO augmentation substantially improves robustness across
controllers. Both PID+ESO and LQR+ESO demonstrate re-
duced deviation during the wind-on interval and faster recov-
ery once the disturbance is removed. In particular, LQR+ESO
significantly outperforms nominal LQR, indicating that perfor-
mance degradation in the baseline LQR controller is primarily
caused by unmodeled disturbances rather than feedback struc-
ture limitations.

Quantitative performance metrics are summarized in Table I,
where wind-on RMSE (5-20 s) is used to directly quantify
sustained disturbance rejection performance.

Overall, these results confirm that ESO-based disturbance
estimation provides a robust and controller-agnostic mech-
anism for improving tracking performance under sustained
wind disturbances.

2) ESO Disturbance Estimation Analysis: Fig. 7 shows the
disturbance forces estimated by the Extended State Observer
(ESO) at the force level along the z, y, and z axes for both
PID+ESO and LQR+ESO controllers during the global wind
disturbance experiment.

During the wind-on interval (¢ = 5-20 s), the ESO estimates



a sustained horizontal disturbance primarily along the x-axis,
consistent with the applied wind direction. Following wind on-
set, the estimated disturbance increases rapidly and converges
toward a quasi-steady value, indicating successful capture of
the external forcing. Upon wind removal, the disturbance
estimate decays smoothly back toward zero without residual
bias, demonstrating stable observer dynamics.

Differences in estimated disturbance magnitude between
PID+ESO and LQR+ESO reflect differences in closed-loop
dynamics and disturbance sensitivity. The near-zero estimates
along the y-axis confirm the unidirectional nature of the
applied wind, while the z-axis estimates capture vertical force
offsets during hover.

Overall, the ESO produces physically consistent disturbance
estimates that directly support the observed improvements in
tracking performance.

3) Trajectory-Based Comparison: The circular trajectory
tracking task evaluates controller performance under sustained
motion, where trajectory-induced dynamics and steady-state
tracking accuracy dominate over transient behavior. A planar
circular reference with a 1-meter diameter is commanded over
a 25 s interval under nominal conditions without wind distur-
bances, allowing baseline controller behavior to be isolated.

Fig. 8 shows the XY trajectory tracking results for the PID
and LQR controllers. Both controllers are able to follow the
circular reference after the initial transient; however, clear dif-
ferences emerge in steady-state accuracy. The PID controller
exhibits a persistent radial offset, whereas the LQR controller
more closely follows the reference circle with reduced phase
lag and improved geometric fidelity.

Tracking error time histories are shown in Fig. 9. Both
controllers experience comparable transient peaks during the
initial maneuver; however, their steady-state behavior differs
significantly. The PID controller converges to a non-zero
steady-state tracking error, while the LQR controller achieves
near-zero error after convergence.

Quantitative performance metrics are summarized in Ta-
ble II. In addition to global RMSE computed over the full
0-25 s interval, RMSE is also reported for the steady-state
period (t > 5 s) to exclude takeoff and transient effects. While
LQR reduces global RMSE relative to PID, the improvement
is substantially more pronounced during steady-state tracking,
where LQR achieves nearly an order-of-magnitude reduction
in RMSE.

This behavior is consistent with its optimal state-feedback
formulation and establishes LQR as a strong baseline for
nominal trajectory tracking prior to the introduction of external
disturbances.

TABLE I
CIRCULAR TRAJECTORY TRACKING PERFORMANCE (NO WIND)

Controller =~ RMSE(0-25 s)[m] RMSE(t > 5 s)[m]  Max Error[m]
PID 0.195 0.153 0.483
LQR 0.129 0.015 0.480

Circle Trajectory Tracking (No Wind, 0-25 s)
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Fig. 8. XY trajectory tracking for the circular reference (no wind). LQR more
closely follows the reference circle, while PID exhibits a steady-state radial
offset.
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Fig. 9. Tracking error magnitude during circular trajectory tracking (no wind).
LQR achieves substantially lower steady-state error compared to PID.

B. Hardware Results

Hardware flight tests were conducted to evaluate the per-
formance improvement provided by ESO-based disturbance
compensation. Both hover and circular trajectory tasks were
executed on the Crazyflie 2.1+ platform with Flowdeck posi-
tioning. All experiments were performed indoors on textured
carpet with consistent overhead lighting to ensure reliable
optical flow tracking.

1) Quantitative Performance Metrics: Table III summarizes
the performance comparison between PID-only and PID+ESO
controllers for the 1-meter diameter circular trajectory task
under ambient wind disturbances from HVAC airflow. The
ESO provides consistent improvement across all error metrics,
with particularly significant gains in maximum tracking error
(29.4% reduction) and standard deviation (21.7% reduction).

The mean tracking error reduction of 16.2% indicates im-
proved steady-state regulation, while the 29.4% reduction in
maximum error demonstrates enhanced transient disturbance
rejection. The reduced standard deviation (21.7%) confirms
more consistent tracking performance with ESO enabled.

TABLE III
HARDWARE PERFORMANCE COMPARISON: PID vs PID+ESO ON
CIRCULAR TRAJECTORY

Metric PID Only PID+ESO Improvement
Mean Error (m) 0.534 0.447 16.2%
Max Error (m) 1.244 0.878 29.4%
Std Dev. (m) 0.370 0.289 21.7%
RMSE (m) 0.649 0.532 17.9%




ESO Hardware Performance Comparison: PID vs PID+ESO
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Fig. 10. Hardware performance comparison between PID and PID+ESO controllers. Top row: Hover task showing 3D trajectory, XY top view, tracking error
vs time, and performance metrics. Bottom row: Circular trajectory task (1 m diameter) with wind disturbances. PID+ESO demonstrates 16-29% improvement

in tracking metrics with smoother trajectories and faster disturbance rejection.

2) Trajectory Tracking Visualization: Figure 10 presents
comprehensive trajectory tracking results for both hover and
circular flight modes.

Fig. 10 summarizes hover and circular trajectory tracking
results under wind disturbances. PID+ESO exhibits reduced
drift, smaller tracking error, and faster recovery compared to
PID-only, with smoother trajectories and lower peak deviations
in both flight modes. For hover, PID+ESO maintains position
error below 0.1 m after initial transients, while PID-only shows
sustained errors exceeding 0.3 m. For the circular trajectory,
PID+ESO peak errors remain below 0.9 m compared to 1.3 m
for PID-only, with notably faster error decay during constant-
velocity segments.

3) Discussion: The hardware results validate the ESO de-
sign and confirm measurable performance gains in real-world
flight conditions. Several key observations emerge:

Disturbance rejection: The reduced maximum error
(29.4%) indicates effective feedforward compensation of ver-
tical wind disturbances through the —md -~ thrust correction
term. The ESO successfully estimates and compensates for
HVAC-induced airflow variations.

Horizontal coupling: Despite implementing only vertical
disturbance compensation, horizontal tracking also improves
due to attitude-translation coupling in quadrotor dynamics.
Vertical thrust corrections indirectly influence horizontal posi-
tion through small pitch and roll adjustments.

State estimation quality: The improved mean error and
reduced standard deviation suggest that ESO state estimates
(p, v) provide smoother feedback signals than raw Flowdeck
measurements, reducing control chatter and improving regu-

lation performance.

Real-time feasibility: The ESO operates reliably at 500 Hz
on embedded hardware without timing violations or numerical
instability, demonstrating practical deployability on resource-
constrained platforms.

These results establish PID+ESO as the most robust and
deployable solution for real-world quadrotor flight under wind
disturbances, achieving substantial performance gains without
requiring controller redesign.

C. Discussion

The combined simulation and hardware results highlight
the critical role of disturbance awareness in quadrotor control
under wind disturbances. While model-based controllers such
as LQR and TinyMPC demonstrate strong performance under
nominal conditions, their effectiveness degrades significantly
in the presence of unmodeled external forces.

A key observation is the discrepancy between simulation
and hardware performance for nominally optimal controllers.
In simulation, LQR and TinyMPC achieve low steady-state
tracking error when the model assumptions are satisfied.
However, in hardware experiments, these controllers exhibit
sustained position offsets and large transient deviations under
wind. This behavior can be attributed to several sim-to-
real gaps, including unmodeled aerodynamic effects, actuator
dynamics, sensor noise, processing delays, and parameter
uncertainty. In contrast, the cascaded PID controller maintains
reasonable robustness due to integral action, albeit with slower
disturbance rejection and larger transient errors.



The introduction of the Extended State Observer (ESO) sub-
stantially mitigates these limitations. By explicitly estimating
lumped disturbances online, the ESO reduces the dependence
on accurate system modeling and enables effective feedfor-
ward compensation. This effect is particularly pronounced for
the LQR controller, where ESO augmentation recovers much
of the nominal performance lost due to model mismatch, as
evidenced by significant reductions in wind-on RMSE and
maximum tracking error.

Hardware results further demonstrate that even partial dis-
turbance compensation, limited to the vertical axis, yields
measurable improvements in both vertical and horizontal
tracking. This cross-axis improvement arises from the coupled
translational and rotational dynamics of quadrotor flight, where
thrust modulation influences attitude and horizontal motion.
Importantly, the ESO operates reliably at high update rates
on embedded hardware, confirming its practical feasibility for
real-world deployment.

Overall, these findings emphasize that robustness to external
disturbances is at least as important as nominal optimality for
aerial robots operating in realistic environments. ESO-based
disturbance estimation provides a principled and computation-
ally efficient mechanism to bridge this gap without requiring
extensive controller redesign.

D. Key Takeaways

The following key conclusions are drawn from the simula-

tion and hardware evaluations:

« Disturbance awareness is critical: Controllers without
explicit disturbance estimation, including nominal LQR
and TinyMPC, suffer significant performance degradation
under wind despite strong nominal performance.

« ESO improves robustness across controllers: ESO aug-
mentation consistently reduces tracking error, transient
deviation, and recovery time under wind disturbances,
independent of the underlying control architecture.

o PID+ESO offers the best deployment trade-off: While
LQR+ESO achieves strong performance in simulation,
PID+ESO provides the most reliable and robust behavior
in hardware, balancing disturbance rejection, robustness,
and computational simplicity.

o Nominal optimality does not guarantee real-world
performance: Simulation-optimal controllers may fail in
hardware due to model mismatch, sensor limitations, and
unmodeled dynamics, underscoring the importance of
robustness-focused design.

o ESO is computationally feasible for embedded sys-
tems: The implemented ESO operates stably at 500 Hz
on the Crazyflie platform, making it suitable for real-time
onboard deployment without hardware upgrades.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This work investigated disturbance-aware control strategies
for quadrotor flight under wind disturbances, with a focus on
integrating an Extended State Observer (ESO) with classical

and model-based controllers. The primary objective was to
evaluate whether online disturbance estimation and compensa-
tion can improve robustness and tracking performance without
requiring substantial controller redesign.

Simulation results show that although model-based con-
trollers such as LQR and TinyMPC achieve strong nominal
performance, their tracking accuracy degrades significantly
under unmodeled external disturbances. In contrast, ESO
augmentation consistently reduces steady-state offsets, limits
transient deviations, and accelerates recovery across multiple
control architectures. Disturbance estimation analysis further
confirms that the ESO produces physically consistent and
temporally correlated estimates that directly enable effective
feedforward compensation.

Hardware experiments on the Crazyflie platform validate
these findings in real flight conditions. Despite actuator lim-
itations, sensor noise, and aerodynamic uncertainties, the
PID+ESO controller achieves measurable improvements in
mean error, maximum deviation, and tracking consistency
under ambient wind disturbances. These results highlight the
practical advantage of ESO-based disturbance compensation
in mitigating sim-to-real performance degradation.

Overall, this study demonstrates that ESO-based disturbance
estimation provides a robust, controller-agnostic mechanism
for improving quadrotor flight performance under wind dis-
turbances. By reducing reliance on precise modeling and
enabling online compensation of external forces, the ESO
bridges the gap between nominal optimal control and real-
world robustness.

B. Future Work

The current ESO formulation primarily compensates for
vertical disturbances, leaving horizontal wind effects to be
addressed indirectly through attitude—translation coupling. Ex-
tending the observer to a higher-order (e.g., 15-state) for-
mulation to explicitly estimate horizontal disturbance forces
could further improve tracking performance under lateral
wind conditions, provided that observability and computational
constraints on embedded hardware are effectively managed.

Building on enhanced estimation, integrating explicit hori-
zontal disturbance compensation into the control loop offers
another avenue for improvement. While this study preserved
modularity with the inner-loop attitude controller, subsequent
research could explore coordinated force-level compensation
strategies that optimize the trade-off between robustness and
controller structure.

Moreover, deploying ESO-augmented optimal controllers
such as MPC on hardware presents a significant opportunity
for advancement. Although TinyMPC demonstrates promising
performance in simulation, its sensitivity to model mismatch
currently limits direct transfer to real flight. Fusing MPC with
online disturbance estimation may enable constraint-aware
control with improved robustness, effectively bridging the gap
between theoretical optimality and real-world deployability.
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